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Abstract. We reconsider the problem of diffusion on a self-avoiding walk with local bridges. 
Levy flight arguments are presented to estimate the spectral dimension, based on known 
results on the statistics of loops in a SAW. Agreement with ESR experiments on proteins 
and with numerical simulations is found to be satisfactory. 

It is well known that different physical properties of a fractal structure are characterised 
by different dimensions which, in general, d o  not coincide with the fractal dimension 
d, .  A celebrated example is the spectral dimension d ,  [l], which describes the low- 
frequency phonon density of states ( p ( w )  w d > - ’ ) ,  or equivalently the asymptotic 
behaviour of a random walker moving on the fractal structure, which obeys the diffusion 
law: R 2  - td\ ldf .  For percolation clusters, d,  is close to in any dimension [ 1 1  and is 
thus different from d,. For a linear structure such as-a polymer, it is obvious that 
d,  = 1 .  Indeed, a random walk on the structure obeys s2  - t ,  where s is the arc length 
of the walker; d,  = 1 then follows from R - s ’ ’ ~ , .  More generally, a value of d, different 
from 1 ( d f  be@ unchanged) would mean that diffusion along the polymer is anomalous 
and  follows s2-  rd%.  

Electron-spin-lattice relaxation experiments on some proteins allow us to estimate 
d, for these structures through the temperature dependence of the relaxation ratet .  
The interesting and surprising result of Stapleton et a1 [3] is that d , =  1.65*0.04 for 
several different proteins (including myoglobin and ferricytochrome c), which is very 
close to their (x-ray) measured fractal dimension dr=  5. This value of d,  is that expected 
for a usual three-dimensional self-avoiding walk (SAW)$ (see, for example, [4]). 
However, d, appears to be somewhat larger than 1, which corresponds to hyperdiffusion 
and precludes a simple interpretation as a usual random walk along a SAW. As discussed 
in [5], hyperdiffusion generally arises either from strong correlations or from a broad 
distribution of elementary step lengths (Levy flight). The aim of this letter is to suggest 
that a natural origin for the latter mechanism exists in this problem and  to present a 
simple estimation of the resulting value of d,. 

Indeed, as first proposed in [6], a possible way out of d,  = 1 is to take into account 
the possibility for the walker to take shortcuts whenever two non-consecutive monomers 
of the S A W  are nearest neighbours in space (see figure 1). These shortcuts d o  exist for 

t We deal in this letter with the diffusion problem, i.e. scalar excitations. It could well be that, for proteins, 
the vectorial character of the excitations has some importance, as discussed in [2]. 
t This result is, by itself, rather unexpected owing to the complex nature of protein chemistry. 
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Figure I .  Unfolding a self-avoiding walk with local bridges generates long-range (Levy-like) 
steps. 

the phonon problem, since cross-links (e.g. hydrogen or  disulphide bonds, etc) play 
the role of additional 'massless springs'. Those springs rigidify the structure and thus 
deplete the low-frequency (long-wavelength) density of states. It was argued in [6] 
that, if there is a sufficiently large fraction of these shortcuts, the walker will eventually 
see the underlying Euclidean space rather than the structure itself and would thus 
diffuse according to R 2 -  t, thus leading to d, = d f .  This proposal has been widely 
discussed in the two-dimensional case. Real space renormalisation group techniques 
[7,8] and Monte Carlo simulations [7,9-111 have been used to investigate the diffusion 
law. The results show quite a large scatter, ranging from d,< 1 (d,=0.96 in [7]) to 
d, > 1 (d, = 1.04 in [ 1 1 3 )  or d, = 1 (in [lo]). However, all are quite far from the fractal 
dimension df = $ of a ZD SAW, thus invalidating the argument of [6], suggesting that 
d, = df for a SAW with local bridges. 

We propose to use a Levy flight argument, to which we now turn, in order to evaluate 
d, for this problem. A jump of the walker across a local bridge amounts to a step of 
length I when measured along the chain, where I is the size of the loop joining the 
two monomers (see figure 1 ) .  The probability distribution of the loop sizes is a known 
quantity of polymer physics: its asymptotic behaviour is characterised? by the contact 
exponents introduced by des Cloizeaux [12]. For a loop well inside the chain, one 
has, for large I, 

where O2 is known exactly from conformal invariance in two dimensions [13] and up  
to order .s2 in an  E = 4 -  d expansion [12]. The asymptotic behaviour of P(1)  is thus 

p = 2.18 i n d = 3  
C L = %  in d = 2. 

P(1) - A,I"( 

Two comments are now in order. 

t Note that P ( / )  is not exactly the quantity considered in [IZ]. However, as the number of loops is 
proportional to the number of monomers, the two quantities have the same asymptotic behaviour. 
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( i )  5 IP( I )  d l  converges, thus leading to a finite fraction of contact points, as noted 
in [ 121. However, this does not imply (as claimed in [ 141) that loops are irrelevant to 
diffusion, since 

I*P(I )  d l  diverges, which is precisely the condition under which normal 
diffusion breaks down. Indeed, suppose, as a first approximation to the real diffusion 
process, that on each monomer the walker can choose the size I of its jump according 
to the probability distribution P ( 1 ) .  Then, for P ( I )  - /-’”_with 2 < p < 3, this ‘uncorre- 
lated Levy flight model’ leads to a diffusion law [15]t:  s z -  rd’  with d S = 2 / ( p  - 1 ) >  1 .  
However, this is only a first approximation, since the configuration of the polymer is 
in fact quenched: on each monomer, the length of the possible jump is fixed once for 
all. To take this effect of spatial correlations into account, one can refine the preceding 
argument in a self-consistent way, in the spirit of [ 5 ] .  A diffusion law of the form 
sz -  td‘ means that each link is crossed t l -d . ’ z  times and  that ids” different links are 
probed; each link thus contributes to a typical displacement ( t 1 - d < ’ 2 ) l t  and thus 

( i i )  

,J\, 2 

( 3 )  s - ( t l - d , / 2  112 ) c 1,. 
, = I  

I f  the I ,  are distributed according to P ( I )  - I -* ,  then 
M c I ,  - 

, = I  
(4) 

and self-consistency thus requires d,  = 1 - d , /2  + d J ( p  - l ) ,  leading to 

d S = 2 ( p - 1 ) / ( 3 p - 5 ) .  ( 5 )  

The values of d, obtained for two- and three-dimensional SAW according to our two 
approximation schemes (‘uncorrelated’ and  ‘correlated’ Levy flights) are summarised 
in table 1 ,  together with the experimental value for proteins [3] and the most recent 
numerical one for 2~ SAW [ l l ] .  The good agreement appears to us as a convincing 
clue that the Levy flight mechanism described here does capture the essential physical 
features of the problem. 

Let us conclude with a few remarks. 
( a )  Note that the enhanced diffusion law along the SAW truly enhances the diffusion 

in the underlying Euclidean space (and thus modifies the phonon spectrum according 
to p ( w )  - wd\-I), despite the local character of the bridges. Indeed, f x  large enough 

Table 1. Values of  d ,  for SAW with local bridges, according to the two Levy flight arguments 
described in the text. 

4 3 d ,  I 

CL uncorrelated correlated d, 1 

( =  u ( d  + e,)) Levy flight Levy flight experimental 

d = 2  I6 11- 2 , -  1.19 %= 1.10 1.04 

d = 3  2.18 1.69 1.53 1.65 * 0.04 

4.1 

(numerical [ 1 I ] )  

(order E ‘ )  (proteins [3]) 

t In d > 4, one has U = 4, e2 = 0, and thus p = 2. Nevertheless, diffusion becomes normal (d, = l ) ,  since the 
number of contact points is no longer thermodynamical (A,, = 0 )  and the Levy flight effect thus disappears. 
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time (many local bridges visited), s is also large, and  thus the relation R 2  - ( ~ ' ) ' ' ~ r -  

td<ldf  is valid. 
( b )  The fact that local bridges can generate a Levy-like behaviour was already 

noticed in [7], but surprisingly the resulting effect was argued to be a slowing down 
of diffusion (d,< 1) rather than an  enhancement. An exactly solvable example where 
Levy-like bridges can be shown to  enhance diffusion is the Koch curve studied in [ 161 
(note, however, that the step sizes in this example are hierarchically distributed). Note 
furthermore that d ,>  1 means that the end-to-end resistance of the structure grows 
like N' with an  exponent 6 =2/d,-  1 < 1.  

(c)  If our mechanism is the correct one, it means that the statistics of long loops 
is crucial, and  thus that small-cell real space RG or Monte Carlo simulations on  too 
small chains would fail to produce the correct d ,  value. As a consequence, we suggest 
that any convincing numerical study of d, should be accompanied by a check that, 
not only d f ,  but also the loop statistics of the generated SAW are in agreement with 
known results. In this respect, it is interesting to note that, if one takes for p the 
numerical determination of [ 171: p = 2.95 f 0.2 in 2D (obtained by enumeration), one 
finds from ( 5 )  d ,= 1.01, which is quite close to the Monte Carlo values quoted above. 
The problem of convergence of p and d ,  towards their asymptotic values is obviously 
quite hard. 

( d )  We have implicitly assumed throughout this letter that the fraction f of 
monomers belonging to no loops is zero in d = 2 and d = 3, otherwise one would 
necessarily obtain d, = 1 in the asymptotic limit. This point is, to our knowledge, not 
definitely settled [ 181. According to [ 191, it remains finite at first order in E = 4 -  d. 
However, even if this was to be true for d = 2 and 3, the density of states would have 
the following form: p ( o )  -f+ ( 1  - f )od.-', thereby defining a crossover frequency 

to be compared with the minimal frequency of the experiment ( l / R * -  1 /  N'", or k g T ) .  
It seems to us that the number N ,  thus defined would be so large that the diffusion 
regime relevant to experiments would still be the one studied in this letter, namely the 
large loop contribution. 

( e )  We have not mentioned another experiment [20] on a protein (ferridoxin) 
whose fractal dimension appears to be close to :, which is the fractal dimension of a 
2~ SAW. Nevertheless, it is not clear to us whether the whole statistics of loops has a 
2~ nature. O n  the contrary, we feel that the 3~ nature of the structure could generate 
an intermediate statistics for P ( I ) ,  and thus a value of d, intermediate between 1.10 
and 1.53. The experimental value is 1.34*0.05. 

This work was initiated by a seminar given by A Maritan at  Ecole Normale SupCrieure 
in April 1987. We thank him, as well as M Mezard and G Toulouse, for very useful 
discussions. 
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